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Abstract

A simulation system has been developed which
is capable of bitlevel simulation of spacecraft data sys-
teins. Object oriented techniques and an embedded
interpreted language have been employed to produce a
highly configurable tool for control and viewing of
spacecraft states. Parallel processing computers have
been used for running simulations to achicve execution
performance of up to ten times real time, which alows
for effective utilization of the simulator in testing space-
craft command sequences before they arc committed to
operation. Elements of simulations can be reused as-is
in the construction of ncw simulators.

1, Background

Spacecraft exploration of the solar systcm
requires communication over long distances, with com-
munication delays on the order of hours. Commands
scat to a spacecraft must meet a high standard of accu-
racy, as an error in acommand can not be rapidly
detected and corrected and could potentially mean 10ss
of the spacecraft, Construction and verification of com-
mand sequences has traditionally been alabor intensive
and painstaking procedure.

Since the advent of microprocessors in space-
craft data systems, it has been considered too complex
to perform a rapid simulation of the data opcrations of a
spacecraft bit for bit in order to test and validate planned
event scquences Lo be carried out in space, lowever,
advances in computing technology have provided
machines with previously unimagined capabilitics
which have made this job feasible.

Wc have built a prototype multimission space-
craft simulator which has been used for the Galileo and
Cassini missions to demonstrate the feasibility of bit
level simulation, and arc currently building a production
version for each mission, The Galileo spacecraft, which
incorporates adata system consisting of six RCA 1802
microprocessors running at 200 K11z and iwo spacecraft
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data buses running at 400 KHz, is now on its way to
Jupiter for a two year orbital tour beginning in Decem-
ber 1995. The Cassini spacecraft is currently being
designed and will have a data system consisting of four
1 MIP 1750a microprocessors connected by 1 Ml 1z
1553b data buses. It will perform a similar mission at
Sat urn.

A previously published paper! covered work
which established the feasibility of bi[-level smulation
of spacecraft systems. This paper discusses a ncw
object-oriented architecture and implementation for bit-
level simulation which gives a multi-mission modeling
capability, flexible scheduling of etement execution, the
ability to establish hoc views of simulation components,
and significantly higher levels of adaptability and main-
tainability.

The spacecraft data systems to be modeled typi-
cally consist of a number of CPUs interfaced via multi-
ple high speed buses and often several marl
peripherals. After considering several approaches, it was
determined that this systcm was best smulated on a par-
allel architecture host. The spacecraft data system typi-
call y consists of about 10 independent processes being
executed simultaneously. This is optimally simulated
using 10 or more host processors (at 1east onc host pro-
cessor per simulated spacecraft processor.) The host
processors each simulate for an appropriate time slice
and (hen synchroniz¢ to assure that they stay in relative
time st cp. Spacecraft processor communication is done
viabuses. The simulation treats buses as separate pro-
cesses which transfer data between memories and pro-
cessors. Aslong asthe simalator time step between
synchronization is kept small enough (typically 100
Hz), the smulated proccsses, including bus transactions,
can occur in any time order within the time step and
maintain fidelity.

The multiple processes on the host computer
require a high level of interaction. Several methods were




explored to maximize performance. Initial prototypes
were developed on distributed memory systems inter-
faced through serial buses. Nata transfer rates and
latency were critical and eventually it was found that a
shared memory host architcetuse provided the optimal
performance. An 8 processor Silicon Graphics computer
with 40 MI 1z R3000 processors and 2 stage cacheinter-
faces to shared memory was used for prototypes. There
it was possible to run asimulation 10 t imcs faster than
real time and synchronize processes at 751 1z in simu -
lated spacecraft time (--750 | Iz in real time.) This pro-
vided the performance needed to build atool adequate
to support spacecraft operations. Future implementa-
tions will USC shared memory machines with faster
CPUs, cache, and memory access. Thiswiii be needed
to provide the same level of support for newer, faster
spacecraft.

3. Simulator Architecturg

3.1 Simulation Elcments

Our implementation consists of objects which
model the large grain hardware components of aspace-
craft, e.g. 1750a processors or 1553h bus controllers. It
was observed that these components exhibited anatural
packaging, with asmall number of well defined inter-
faces. l'or example, a processor usually contains at least
one read/write interface t0 an address space. The proces-
sor iISmodeled as an object which includes an embedded
address interface object, and performs reads or writes to
addresses via this embedded object. The address inter-
facc object is connceted at run time with another address
interface object, which forwards a read or write opera-
tion iNnto its owner clement for action.

Simulation elements usually contain more than
onc interface, €.g. processors contain interrupt and other
service lines. A simulation element can contain any
number of interface objects, including multiple copies
of asingle kind of interface. Anclement iSused during a
simulation run by Creating a sicw instance of its type and
then booking up each of its embedded interfaces to a
complementary interface.

Woc chose C++ as the implementation language
for simulation elements, because of its run time effi-
ciency aswell as for its support for object-oricnkki pro-
gramming, A processor clement, for example, may
emulate a hardware instruction set and the code which
implements this must be sufficiently fasi to meet the per-
formance objectives of tile simulator. This code for the
current 1802 and 1 750h processor implementations con-
sists of afetch, decode, and execute loop implemented
with C++ switch statements and reads/writes via ihc
cmbedded interface objects.

Our system dots not force the implementation of
any elementto be a bil-wise emulation. Because the cle-
menls arc decoupled from each other and communicate
oniy viatheir cmbedded interface objects, they canbe
done in any way that meets localized objectives for
speed and functiondity. There can be scveral element
implementations for a single processing element in tile
spacecraft, and the choice of which to usc can be made
at run time. For example, wc have two alternative mod-
cls for the processor which operates the Attitude, Artic-
ulation, and Control Subsystcm (AACS) in the Galilco
simulator. Because this microprocessor (ATAC 16) is
faster than the 1802 processors in the Gatiteco Command
and Data Subsystem (CDS), afull bit level emulation of
its operation limits tile speed of the entire simulator. In
some cases the simpler, functional simulation iS suffi-
cient and allows for afaster simulation run for the entire
spacecraft system,

32 Connecting Simulation Elements

inorder to construct a working simulator, a num-
ber of sSimulation clements must be created and each of
their embedded interfaces connected to a complemen-
tary interface. These connections, which wc refer to as
“splices’, arc t yped and the interfaces to be connected
on ecach cnd must be of compatible type. A simulation
clement has no internal knowledge of what it's con-
nected to (other than internal assumptions about what an
interrupt line means, for example), so it is possible to
connect any compatible object mitsend. Onc usc of this
is to interpose a monitoring object between two cle-
ments that would normally be spliced directly together,
which can perform extra services such as statistical
analysis or graphica display. A uscintended in the
futureis to provide a “tinker toy” like construction of
spacecraft Systems from existing picces, in order to
rescarchnew spacecraft designs more cheaply,

“1'0 accommodate memory mapping, address
ranges for processing eicments must be able to be split
among several recipicuts, Our most recent design allows
this capability via specialized interface objects which
examine addresses before routing them appropriatel y.
This kind of embedded interface iS implemented via
C++ inheritance, so that nrm-memory mapped clements
which usc the simpler base class implementation do not
have (o incur the cost of memory examination and rout-
ing. The address ranges of memory mapped connections
arc established by parameters to splicing commands
issued at start-up. A related problem is the mapping of
addresses to different addresses as they are being for-
warded to the recipient object. This iSaccomplished in a
similar way, with an inherited interface object which can
perform the necessary transform.




3.3 Command and Control of Elements

Our design philosophy for simulation clements
was that they should contain a Ssimple and minimal set of
C++ member functions (methods) to implement their
functionality, but contain a Turing equivalent language
interpreter which would alow construction of arbitrarily
complicaled compound operations based on the atomic
member functions. W felc (hat it would be bard to antic-
ipatc all of the functionalily that might be desired from a
simulation clement, but that by providing a language
which could access an clement’s basic operations we
could provide any feature nccded without extensive
redevelopment.

The language chosen for the embedded interpret-
ers was Tcl (“tool command language”), a freely distrib-
vled embeddable interpretive language developed at the
University of California at Berkeley?. This isasmall but
powerful and extendable langnage which interfaces wc]]
with C/C++. It also has a superset graphical language,
Tk, which allows for the easy creation of graphica user
interfaces which can exchange Tcl commands with an
application (see example in figure 1.)

Allelements share a small et of common func-
tions, which include an ‘execute’ command to cause
Simulation for a specificd length of time and a‘set’ com-
mand for scting and retrieving the value of an clement’s
internal variables. An element’s class definition contains
a declaration of allinternal variables that will be avail-
able to Tel viathe ‘set’ command, which can include
processor registers, memories, and other metadata
which an element contains such as lists of bus transac-
tions, etc. The declaration of commands and variables
for Tcl occur in an element’s C++ constructor, so objects
which inherit from a base class object receive the same
Tel functionality without having to redeclare it, Individ-
ua element classes also extend their command set to
provide functions particular to their operation.

3,4 Simulator_construction

The simulator operates in an interpreted fashion
in constructing a spacecraft mode] to perform a partico-
lar simulation. The main() function for this program is
very smple;

main(intarge, char * argv[l)

(

Executive cxe();
exe.startup(arge -1, argv + 1);
return(0);

A single object iSinitially const ructed, the “exec-
utive”, which is responsible for interpreting further

commands to create objects, splice them together, and
exccute Simulation activities. The executive tries to find
aname of astart-up file from its argv[} arguments, from
afile called “ fastsim” in the current directory, or from
the standard input, in (hat order. 1( (hen waits in aservice
loop for further commands from a user interface cle-
ment, if one has been created, or from the standard input
if one has not.

The interpreted nature of system construction
allows for agreat deal of flexibility. It is possible to cre-
ate astandard smulation from abatch file, or to create a
graphical user interface (GUI) which offers choices for
configuration options to allow a user to bring up a cus-
tomized Simulator.

Commands to the executive are Tel commands
which arc special to its class. ‘new’ for invoking ele-
ment constructors, ‘splice’ for connecting element
embedded interfaces together, etc. Another command
which is specia to the executive is ‘send’, which allows
a'l'el commandto be sent to any object that has been
created. This alows script driven ad hoc queries and
computation to be performed at any time, giving a large
amount of adaptability and flexibility to the simulation
system. ‘Scud’ commands arc passed over a command
splice to areceiving object’ s interpreter, and the
response to the command read back and despatched
appropriately. A command splice to objects is automati-
cally created by the executive during execution of the
‘new’ command.

2.5 Execution Scheduling

Itis possible to opcrate a simulation by sending
Tel‘execute’ commands Viathe executive's ‘send’ com-
mands, but in practice (his is uot fast enough for produc-
tion sSimulation runs. Instead, a‘scheduler’ element is
created which can form cxecution splices to simulation
elements, Which add minimaloverhead in invoking ele-
ment exccution member functions.

The scheduler is responsible for enforcing ren-
dezvous points during execution. During parallel execu-
tion of a simulation, a number of machine cycles for
different clements may be executed simultancously and
asynchronously, and if any interaction belween elements
occurs a this time it will most likely not reflect the syn-
chroncity that occurs on the real hardware. Rendezvous
provide synchronization and a merging of threads so
thatelement interactions can OcCur reliably. Rendezvous
times canbe sc( to any value, from as little as onc simu-
lation clock cycle 10 any arbitrarily higher value. A onc
clock cycle rendezvous ensures perfect fidelity to the
spacecraft hardware, but the overhead from this number
of rendezvous greatly reduces performance. Setting
larger rendezvous values allows us to achicve higher




performance, but there iS an upper limitto the size of a
rendezvous before the simulation fails 10 mirror the
actual hardware. In the Galileo spacecraft, most transac-
tions between spacecraft components occur at a“real
timc interrupt” (1-WI) which occurs every 1/1 5 second,
but a number of sub-RT1 transactions also occur. We
have found that rendezvousing at 1/5 of an RT1 gives the
largest time slice that will work, but which still allows
uSto attain aten times red time simulation.

Rendezvous points are enforced by the scheduler
even when exccution commands are sent which would
otherwise cause a rendezvous point to be overrun, For
example, a user might choose m single step the simula-
tor through an interesting portion, then ask itto jump
ahcad one RTI. The scheduler issues commands to cle-
ments to execute for a particular number of clock cycles,
and reads the return value of the call to find the actual
number of cycles executed (an element may execute lcss
than the number of requested cyclesif it cannot finish an
atomic operation,) It then computes the correct number
of cycles m send to each element on the next command
based on the running total of executed time for each ele-
ment and the length of time to the next rendezvous.

The scheduler runs from a master scheduling list,
which can be composed of any mixture of clements or
other scheduling sub-lists, FEach list is defined to bc
seria or paralel, which specifics whether or not parallel
computation can be performed on the list elements.
Some parts of asimulation must occur serialy in order
to operate correctly; for example, the delivery of an RT1
signal must occur after all computation in atime dice
has completed, and so the element delivering this signal
isin a seria list following other element execution.
Most of the simulation time, however, is spent in paral-
lel execution of spacecraft clements,

Our simulation parallelism is based on symmet-
ric multiprocessing, sothat al threads have access to the
same address space. Becaunse al of the execating space-
craft elements arc implemented as C++ objects they
operate on their own encapsulated data, and usc no data
locking or mutexes to avoid conflict. A faulty schedul-
ing list has the potential m cause non-deterministic
behavior if it schedules clements in parallel which call
through other elements executing concurrently, but our
scheduling lists to date have been simple and wc haven’t
had any problem with collision. | lowever, WC planto
install switchable mutexes in the future so that schedul-
ing list integrity can be checked at will.

A simulation may be run on a single processor or
multiple processor machine with no change in code or
configuration. On a a single processor machine, a paral-
lel scheduling list simply executes sequentially.

3.6 Simulation Monitors

‘Monitors’ arc simulation ¢clements which arc not
part of a spacecraft model, and which serve as compan-
ion clements that watch and report on the state of a
spacecraft element. Like all elements, they contain alcl
interpreter which can provide any desired functionality
by loading the proper script, Monitors can be crealed on
thefly, and can be added to or deleted from scheduling
lists aSnecessary. A monitor is normally spliced to its
companion’s Tcl command interpreter, which provides
access to al of a spacecraft’s internal state via ‘set’ and
other commands. In some cases, a higher performance
interface isneeded for examining memory locations in
the companion object and a memory splice is made to
provide this.

One usage of monitors is for debugging; the
monitor issct to watch for any computable state speci-
fied by the logic in its script. On detection of an anoma-
lous state, it can send awarning message or arequest to
halt back to the exceutive. It can also be used to send
periodic values back 1o the executive which can be for-
warded to a user interface for display in any desired
way, e.g. strip chart, dial, text, ctc.

A capability that wc intend to implement is to
checkpoint the state of spacecraft elements to disk at
regalar intervals. Upon detection of an anomalous con-
dition, the executive will restore the most recently
checkpointed date vector and then single step forward
until the anomaly is again encountered. This will alow
monitors to do sampling at longer intervals while till
providing for a capability to pinpoint an exact anomaly
state, without significantly degrading simulator perfor-
mance.

4. Simulator Performance

A simulaion speed of ten times real time has
been achicved with the Galileo simulator, using a Sili-
con Graphics 41/480, an eight node multiprocessor
machine using MIPS R3000 40 Ml 1z c¢pus. We have
achicved up to six times red time using a single proces-
sor Silicon Graphics Indigo with alater generation pro-
cessor, the MIPS R4000 50 M 1z cpu. Wc belicve that
with additional analysis and performance work that wc
will be able to achicve even better performance from the
multiprocessor simulation.

A significant part of the overhead cost of multi-
processing is duc to rendezvous COStS. We experimented
with a number of different ways of coding rendezvous
and determined that rhe fastest was to have threads spin
on a shared lock variable in user shared address space.
This spin-lock was designed to cause a minimum of bus
transactions, which would otherwise. contend for bus
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resources with other processes still performing useful
simulation Work, This scheme keeps barrier costs within
the order of microseconds, gfd wasfound to be faster
than any of the system proyided rendezvous methods.
With faster hardware for réndezvous support W may be
able ta increase performance in this area.

Preliminary analysis indicates that time slices for
any particular spacecraft clement tend to vary substan-
tially, depending on what code execution is being simu-
Jated during the time sice. During exccution of parallel
scheduling lists, exccu Yon times of the threads vary in a
stochastic way, so tha some of the elements arc always
waiting for the currenly slowest one to finish, Wc feel
that with dynamic s talinngwenay be able to achieve
belter pcrﬁmﬁ{mcc \)'y\pcrforming useful work with the
CPU cygfecurrent wasted in spin-locks while waiting
for lhc@vcsl 010111911 to complete exceution.

< Future Directions

“There arc anumber of enhancements that WC can
make within our existing design, and a number that wc
would like to evolve the design reward in the future. Wc
plan to make a number of changes in the coming year to
make the Galileo simulator much closer wits ideal,
which will mainly involve writing of additional Tcl and
Tk scripts within the existing framework. Possibilities
include making the processor register and memory Win-
dows writable as well as readable in order to allow easy
modification of spacecraft stale, alarm displays that
illustrate what condition has been triggered by monitors,
production of specidized GUIs for particular subvicws
of the system Such as a scan platform or AACS, active
displays which show the amount of idletime on apro-
cessor or the amount and direction of bus traffic, etc.

Although wc have aready demonstrated the sub-
stantial performance advantage of exccuting the simula-
tor on shared memory parallel processor platforins, WC
belicve that We haven’t yet demonstrated the full poten-
tial of the host hardware, In particular, the simulator cur-
rently spends over half of the total available CPU cycles
in spin-locks. The use of dynamic allocation of simula-
tion elements to physical processors may improve the
performance in this area,

A goal for the future isto make atool for design-
ing spacecraft processing systems, in which the designer
could select components from menus and configure
them graphicaly. Embedded interfaces could be drawn
within the graphical representation of an object, and
‘wiring’ of the connections done via drag and drop
bet ween interfaces.

A possible architecture for this is onc in which
the graphica view or views of an element arc encapsu-

lated within i(S object definition, rather than specified by
procedural scripts as wc do now. It is a futare point of
investigation at to whether Tel/T'k is the best way to
accomplish thisor not.

y Summary

Woc have delivered an initia production version
of the Galileo simulator, and arc currently implementing
a production version of aCassini sSimulator. Our current
implementation already provides speed, flexibility, visi-
hility, and case of usc advantages over the existing hard-
warc simulator for Galileo. Jurther enhancements to the
user interface Will give visibility and control of systems
that flight software developers bad not previously imag-
ined.

Further use for other missions from Voyager to
MI:SUR is also being considered. Wc feel that the fiexi-
bility of this implementation will allow usto produce
simulations of other spacecraft that give high capability
at arelatively low cost.

Further development of the sSimulator into a
design tool may make possible thc development of ncw
architectures for spacecraft data systems that would not
otherwise betried because of expense and risk. If so, the
technology of spacecraft design could be evolved more
rapidly.

Refelences

[1 John E.Zipse ctal, A Multicomputer Simulation
ot he Galileo Spacecraft Command and Data
Subsystem, Proceedings of the Sixth Distributed
Memory Computing Confercnce, IEEE Com-
puter Society, 1991,

[2 John K. Osterhout, An Introduction to Icl and
Tk, Addison-Wesley, 1993,




Al Fast Simulator : [ (D]‘
Eile  Contig Help

Galileo CDS

[=! 2LMIA memory 0]
10000: 7120f8ffbcf8flacOchffad0c200151801afc00
0014: 5¢0cfa02c200211802afc0005cf8ffbcf8f0acOc
300?8: bf0cfad0c?200351804afc0005¢0cfaloc2004118
003c: 05afc0005¢0cfa08c2004d1803afc0005¢c0ctato

27 RS 10050: c200591806afc0005¢(807a{{817h11800aldle]
o Fir ] 70064 7121c01700£000b01670a0d0f01dh11839a11830
S Ul {0078: bL2f83fa2{8lah4{8c4adf81ab518d6a5i830hef8
008c: 50ac8f5¢8fff40c30099d41b71f830baf897aad4
} 100a0: 13ch8fff06c200b1£6830hafBacaadq1537{8ffhe

00hd4: f8f0acf8005¢clcSciB30heftfBaciB005ef830he
{00(‘.8 ¢ 1845a0f81f561830hhfB19abe07020183ahA1882
: ad0odff21ca00e6c0000cOdffI0ca01010dff30ca

USA oot . 8 1

UEB oy l ,,V_E g
Lanis e (0 l
: 110a  R12: 3000

: 1439 R13: 3049
: 303e  RI14: 3009
114 R15: 397
lac4 P : D000
: Jadh X3 OO0a
: 33ed D : DOO1
304f T : D0eD
1 374c bF : 0000
1 3Jee 1L : 0001

ﬁpachcra{t cloek (Simnlation Timm
238403.41.09 000-00:03:30.000

Stop

Figure 1. Tk user interface with a memory and a register display active.
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